Seasonal and Inter-annual Variations of Polar TOA Irradiance and Cloud Cover

Seiji Kato, Norman G. Loeb,
Patric Minnis, Jennifer A. Francis,
Thomas P. Charlock, David A. Rutan,
Eugene E. Clothiaux,
Szedung Sun-Mack, Fred Rose,
and Takmeng Wong

Objectives

- Understand Seasonal variations of TOA SW and LW irradiances over the Arctic and Antarctic.
- Understand Seasonal variations of cloud cover.
- Evaluate trends in the SW irradiance and cloud cover associated with sea ice cover change.

Methods

- Use Terra SSF Ed2B_Rev1 from March 2000 through Fe. 2004 and Aqua Ed1B from Aug.2002 through Feb. 2004.
- Derive the daily mean SW and LW irradiances and cloud cover over 1 degree by 1 degree areas.
- Derive area-weighted mean values over the Arctic (60-90N) and over the Antarctic (60-90S).
- Compute anomalies and estimate trends.

Seasonal Variations, Radiation

Seasonal Variation, NET

Annual Mean TOA Irradiance and Albedo

CERES	Arctic	Antarctic
(ERBE)	(60N - 90N)	(60S - 90S)
Downward	204.2	206.8
Shortwave (W m ⁻²)	(201.3)	(202.5)
Albedo	0.469	0.566
	(0.487)	(0.591)
Longwave (W m ⁻²)	201.1	179.8
	(201.2)	(179.8)
Net (W m ⁻²)	-92.6	-90.1
	(-97.9)	(-97.0)

Seasonal Variations, Cloud Cover

Seasonal variation Clouds over Ocean and Land

Comparison with Cloud Occurrence Derived from Ground-based Active Sensors

Day + night clouds over Barrow, AK

March 2000 – Feb. 2004

CERES: CERES

cloud algorithm

Radar: Millimeter Cloud

Radar

Lasers: micro-pulse lidar

Vaisala celometer

Large differences in Radar and Laser-based Cloud Occurrence

Smaller Difference in Cloud Occurrence

Cloud Vertical Profile

Day + night clouds

over Barrow, AK

Daytime Trends Over the Arctic

Nighttime Trend Over the Arctic

LW Night Irradiance

Conclusions

- The daytime cloud fraction over the Arctic from March 2000 through February 2004 increased at a rate of 0.047 ± 0.041 per decade.
- The corresponding top-of-atmosphere (TOA) shortwave irradiances show no significant trend during this period.
- The influence of reduced Arctic sea ice cover on TOA shortwave radiation is reduced by the presence of clouds and compensated by the increase in cloud cover.
- The cloud fraction and TOA shortwave irradiance over the Antarctic show no significant trend during the same period.